
Planning for High Performance OBI

September 19, 2010

Jeff McQuigg
Sr. Architect, KPI Partners
www.kpipartners.com

Agenda

• Introduction

• Logical Data Architecture

• Physical Data Model

• Physical Database – Oracle Focused

2

• Physical Database – Oracle Focused

• OBI Server

• User Interface

• Q&A

The Big Picture

• OBI/OBIEE is a ROLAP
engine
– Relational OLAP

• ROLAP BI Tools = SQL
Generation engines

OBI Server

2.

3

Generation engines

• Great Performance in a
nutshell:
1. Proper Data Design
2. Proper SQL

RDBMS

& other

SQLSQL

1.

Tuning Focus
U

I
O

B
I S

er
ve

r

Page Structure
Report

Configuration

In
cr

ea
si

ng
 B

en
ef

it

In
cr

ea
si

ng
 D

es
ig

n

4

CachingCaching
Proper SQL GenerationProper SQL Generation

–– Metadata configuration Metadata configuration
–– DB FeaturesDB Features

Logical Data ArchitectureLogical Data Architecture
Physical Data ModelPhysical Data Model
Database TuningDatabase Tuning

O
B

I S
er

ve
r

D
at

a

In
cr

ea
si

ng
 B

en
ef

it

In
cr

ea
si

ng
 D

es
ig

n

Great Performance Preview

• Most of Great Performance is achieved before the 1st report is ever run

• 95% of great performance comes down to
– Data Design
– Database Tuning
– Generating the corresponding Perfect SQL

• This will be the focus for today’s seminar

5

• Dashboards and Answers impact performance to a lesser degree
– Highlight a few basic UI design issues

• Caching will be briefly discussed

• Not discussed today:
– OBI Server settings
– Clustering

PNC Bank wins

2008 Oracle

Customer

Excellence

Award

Largest and Most Experienced ORACLE BI Services Company
�Over 80 consultants with 55+ in USA and 30+ in India

�Strong presence in San Francisco, Southern California, Atlanta, Boston,

New York City, Washington DC, Chicago and Toronto

Extensive customer references and accolades
�Pillar Partner for Oracle Business Intelligence in Southern California,

Northern California, North East and South East Regions

�PNC bank won Oracle’s 2008 customer excellence award

�Netshops and PNC Bank presented at Oracle open world 2008

KPI Partners - Leaders in Oracle BI and EPM

�Netshops and PNC Bank presented at Oracle open world 2008

�Novartis Pharmaceuticals awarded “Above and Beyond” award to KPI Partners

�5 customers presented at Oracle Open World 2009

Leader in innovation

�First partner to integrate EBS, BI applications, OBIEE and Hyperion

Proven Implementation Methodology
�Templates of Process Maps that ensures a successful deployment

About Jeff McQuigg
• Senior Architect at KPI Partners

• 9 years Siebel Analytics & OBI consulting experience, 18 years overall

• Developed many of Siebel’s early Analytics v7.0 best practices & wrote part of
the certification exam

• Personally been involved with over 30+ OBI projects in every capacity (BI
Architect, Data Modeling, RPD Metadata, Business Analyst, Report Developer,
ETL Architect/Developer, Project Manager)

7

ETL Architect/Developer, Project Manager)

• BI & OBI Thought Leader:
• Longtime IT Toolbox Blog & now greatobi.wordpress.com
• Co-Moderator of new architect-level OBIEE Enterprise Methodology

discussion board
• Frequent Oracle Open World Speaker
• Developed OBI Deployment Methodology, deliverable templates and all

Training programs with Metricsphere

• Currently day-to-day managing & architecting a $2.1 million custom DW & OBI
project

Logical Data Architecture

Anatomy of an OBI Query

Display (Dashboards)

Reports (Answers)

Pages contain reports

Reports translate into
Logical SQL

Resultant Data Set
Multi-Level Aggregation

Formatted Reports

U
I

9
Reporting Database

OBI EE Server

Logical SQL translated
to Physical SQL(s)

Resultant Data Set(s)

BI Server Cache

Logical Query
cache checked

Data sets combined
Functions applied

O
B

I S
er

ve
r

D
at

a

Logical Data Architecture - Centralize

Step #1: Consolidate
• Data can reside in multiple physical places

– OBI can map to each database

• Federation – “Play the data where it lies”
– nQuire/Siebel Analytics/OBI strength from Day 1
– Enterprise Information Integration (EII)

10

– Enterprise Information Integration (EII)

• Virtual Database with distributed tables

Oracle

SQL Server

DW
OBI Server

Logical Data Architecture - Centralize
Federated Model – Good for the Oracle Sales Pitch
• OBI generates queries for each data source

• Data returns from each data source
– Sometimes at a low level grain (detail records!)

• Data must then be integrated on the OBI Server
– Essentially ‘Network Joins’

• Large data over the wire = poor performance

11

• Large data over the wire = poor performance
– Good for prototypes and small sources, such as forecast XLSs

DM

EDW

SQL

Data

SQL

Data

Join,
Merge,
Aggregate
and Sort

OBI

Logical Data Architecture - Centralize

• Centralize data sources into a single database schema

• Let the ETL do the hard work of data movement
– Do it once at night vs. do it every time for a query

• When data resides in one place:

12

– A single query can be generated
– Small result sets returned
– Network joins eliminated

• This goes double when using transactional sources
– Data Warehouses were invented to help large queries

Logical Data Architecture - Integrate

Step #2: Integrate
• Data may be physically in one schema

but still in separate tables
– Multiple OBI mappings � multiple

queries
– More tables to link � slower

performance
• Integration merges and links data

together

Oracle Database
‘EDW’

Mart 1

Mart 2

Customer_1

Customer_2

13

together
– Complex integration rules are done by

ETL not user queries
• Fewer database objects � better

object reuse

• Data Integration is the hard part of any
DW or BI System
– Complex rules are needed
– Poor data quality
– Differing definitions

Oracle Database
‘EDW’

Mart Customer

Physical Data Model

Physical Data Model Overview

• Your main performance weapon is
a good Dimensional Model
– Like a computing Algorithm – not all

models are created equal

• Dimensional Modeling is:
– A data modeling approach
– Conceptually different to relational
– Designed for large query performance

15

– Designed for large query performance
– A skill set unto its own

• A proper ‘Star Schema’ Dimensional
Model:
– Makes mapping OBI Metadata very

easy
– Optimal database query performance
– Uses database optimizations

• Poorly designed models are common

• Think Top-Down design

Dimensional Modeling Overview

16

• “Fact tables” hold measurements/metrics/facts
– Counts, Cycle Times, $ Amts, Qtys, Prices, Estimates, Forecasts

• Link to several “Dimension tables”, which contain descriptions
– Geography, Customers, Products, Time, Employees, etc

• The Book on Dimensional Modeling
– The Data Warehouse Toolkit by Ralph Kimball

Dimensional Modeling Overview

• Dimensional Modeling is a topic beyond the scope
of this session
– Discuss 5 general purpose techniques/tips

• Tips will work great for mainstream databases
– Oracle
– DB2

17

– DB2
– Sybase/SQL Server

• Different recommendations for MPP databases
– Teradata
– DW Appliances (e.g., Netezza)

Dimensional Modeling Toolkit

Technique #1: De-normalize
• Refers to dimensional objects, not facts

• Merge several tables into one flat table
– Opposite of relational modeling
– Do in an OBI Logical table anyway

• Nightly ETL does the de-normalization

Year

Quarter

Month

Day

Week

18

• Goal: Reduce Joins for a query
– Joins slow execution

• Additional Benefit: Simple Model
� Less OBI Mapping effort

• Caution: Facts must remain normalized
– Inaccuracies will arise

Day

Day | Week | Month | Quarter | Year

ETL

Dimensional Modeling Toolkit

• De-normalize dimensions to link to a fact

• A fact table links directly to its dimension tables
– There are no intermediate tables (there are exceptions)

• Use the ETL to directly link each load

19

Dimensional Modeling Toolkit

• The OBI Business Model (BM) defines your
business view of your information
– Defines ‘what you want’ out of your system

• Design rule of thumb: Make the Physical Data
Model resemble the Business Model
– The BM can map to a variety of physical models

20

– The BM can map to a variety of physical models
– Clean & simple mapping is best

Business Model Physical Model

Dimensional Modeling Toolkit

Technique #2: Put Logic in Data Model
• Move complex calculations to the ETL and

store the results as a new field/table
– Some calculations may require many steps and

differing input data sets

• Do once & use often vs. do often

• Goal: Simple Query SQL

21

• Goal: Simple Query SQL

• One of main differences between DW & DM
• DM tailors to a specific use (Top-Down)
• DW is generic in nature (Bottom-Up)

• Benefits:
– Can use other database performance tricks

• Can index the column

– Simple SQL performs better

Dimensional Modeling Toolkit

Technique #3: Aggregate Tables
• Summarize detail records to useful levels

• Use ETL or Materialized Views to create ‘higher’
tables

– Higher grain tables have fewer combinations & are
smaller

• Consider when at least 10:1 compression
– Be careful with Day �Week aggregates DAY_ID

MONTH_ID
PROD_LN_ID
STATE_ID

SALES_AMT

10,000

22

• Map into OBI to have it pick the right table
– Remember to set the Content Tab

• Goal: Database processes fewer rows per
query

• Caution: Consider the costs of each new
aggregate table:

– ETL Batch window, storage, complex mapping,
more code, more QA

– Will other, easier techniques suffice?

PROD_ID
STORE_ID

SALES_AMT

10,000,000

Dimensional Modeling Toolkit

Technique #4: Views
• Views do not help or hurt

performance

• Opaque Views and Database
Views are identical to the
database
– A view is a logic encapsulation

23

– A view is a logic encapsulation
device

• Exception: Materialized views
– Physical tables computed in

the ETL process

• Try to eliminate views in your
system

CREATE VIEW Dim_W_INS_CLAIM_F_VW AS
select CLAIM_WID as CLAIM_WID,
sum(PAID_AMT) as PAID_AMT
from VALUEOF(OLAPTBO).W_INS_CLAIM_F
group by CLAIM_WID;

Identical to the database

Dimensional Modeling Toolkit

Technique #5: Creativity
• Dimensional Modeling is 25% Science,

75% Art

• Create solutions to problems as needed,
keeping in mind the basic rules of
Dimensional Modeling
– Example: Mini Dimensions & Junk

Dimensions

24

• Keep in mind the following goals:
– Want to use simple SQL queries
– Reduce the amount of data the database

has to read
– Use the ETL engine to offload logic from

user queries

• Be sure to weigh costs of every
design decision

Physical Database (for Oracle)

Physical Database Features

• Sometimes there is simply a lot of data

• Highlight 2 key Oracle database features
– Partitioning
– Star Transformations

• Can be designed into the physical data model by the

26

• Can be designed into the physical data model by the
application team

• Commonly used features for data warehousing
– Have been in Oracle database for years

• Are very efficient tools to improve many queries

Physical Database Features

Partitioning
• Breaks up large tables into several

smaller pieces (partitions)

• Database reads only a subset of the
whole table

• The database has metadata about each
piece
– Defines what range of data each partition

UnPartitioned
Data spread across

whole table

Partitioned
Data contained in
specific portions

27

– Defines what range of data each partition
contains

• Goal : eliminate non-needed data reads
– Ex: Monthly partitions on a fact table with

4 years of daily data
• Many queries are interested only in recent

data
• Ex: 2 months of data read instead of all 48

months

• Dramatic performance benefits are
possible

Ignored

Physical Database Features

Star Transformations
• Alternative execution plan for a Star

Schema

• Uses additional information to
recognize the Star pattern

• Requires bitmap indexes and FK
Normal:

28

• Requires bitmap indexes and FK
constraints

• Optimizer rewrites the query

• Goal: Use all of the dimensions to
go after a smaller set of fact rows

• Useful for highly selective queries

Use only 1 dimension to filter
the Fact table
e.g., Filter on Customer only

Star Transformation:
Use all dimensions to filter
the Fact table
e.g., Filter on Customer &
Date & Employee

Physical Database Features

Other Tuning Items
• Ensure Indexes are heavily used

– Review the Explain Plan and eliminate Full table scans

• Oracle Parallel Query may help
– Best for large table or index scans
– Consider other techniques first

29

– Consider other techniques first

• Star Transformations don’t always help

• Narrow down large tables to reduce bytes
– Remove unused fields & metadata columns

OBI Server

OBI Server Tuning

• A good dimensional model is worthless
if questions to it are poorly constructed

• OBI Repository Goal : Configure it to
generate good SQL

If it’s not perfect, it’s wrong

OBI 9000 says : “It can
only be attributable to
human error.”

OBI

31

• Get to know the NQQuery.log file!
• Design Key: Know what the proper

SQL should be beforehand
– correct # of queries being generated?
– correct tables being used?
– correct joins being used?
– How does the design of a report change

the SQL?

Know Your SQL

• It all starts by knowing the correct SQL for each query
& report

• Brush up on your SQL!
– Become knowledgeable of:

• The WITH clause
• What the ROW_NUMBER() does to SQL
• How Time Series SQL works
• Aggregate window functions (e.g., MAVG())

32

• Aggregate window functions (e.g., MAVG())
• Subtotals (PARTITION BY)
• Set Math (Union)

– Newer OBI versions generate more complex SQL

• When tuning:
– Start simple (not totals/subtotals & single fact tables)
– Then add report logic to see when a problem arises
– Always start with the Table view

• Confirm your base record set and underlying query

Common Tuning: Wrong # of Queries

• Know the # of queries expected
– Some requests should generate 2 queries
– If 3 are generated, then OBI has been set up incorrectly

• OBI in some cases will generate one large query with 2
queries merged together

(Select A,Sum(B) from Fact B, Dim A)

33

(Select A,Sum(B) from Fact B, Dim A)
FULL OUTER JOIN
(Select A, Sum(X) from Fact X, Dim A)

– Check the Perf_Prefer_Internal_Stitch_Join and
ROWNUM_SUPPORTED parameters to control

• Subtotals and report totals may generate sub-queries

Database Features Tab
• The default settings are not

always optimal!

(select 'Compliance : ' as c1,
' ' as c2,
case when nvl(case when D4.c1 = 0 then 0 else nvl(D5.c1 , 0) / nullif(D4.c1, 0) end , 0) = 0 then 0 else (case when D4.c1 = 0 then 0 else nvl(D5.c1 , 0) / nullif(D4.c1, 0) end - case when D2.c1 = 0 then 0 else nvl(D3.c1 , 0) / nullif(D2.c1, 0) end) / nullif(case when D4.c1 = 0 then 0 else nvl(D5.c1 , 0) / nullif(D4.c1, 0) end , 0)

end * 100.0 * D1.c1 + case when nvl(case when D4.c1 = 0 then 0 else nvl(D5.c2 , 0) / nullif(D4.c1, 0) end , 0) = 0 then 0 else (case when D4.c1 = 0 then 0 else nvl(D5.c2 , 0) / nullif(D4.c1, 0) end - case when D2.c1 = 0 then 0 else nvl(D3.c2 , 0) / nullif(D2.c1, 0) end) / nullif(case when D4.c1 = 0 then 0 else nvl(D5.c2 , 0) / nullif(D4.c1, 0)
end , 0) end * 100.0 * D1.c2 +, 0) end - case when D2.c1 = 0 then 0 else nvl(D3.c7 , 0) / nullif(D2.c1, 0) end) / nullif(case when D4.c1 = 0 then 0 else nvl(D5.c7 , 0) / nullif(D4.c1, 0) end , 0) end * 100.0 * D1.c7 + case when nvl(case when D4.c1 = 0 then 0 else nvl(D5.c8 , 0) / nullif(D4.c1, 0) end , 0) = 0 then 0 else (case when D4.c1 = 0
then 0 else nvl(D5.c8 , 0) / nullif(D4.c1, 0) end - case when D2.c1 = 0 then 0 else nvl(D3.c8 , 0) / nullif(D2.c1, 0) end) / nullif(case when D4.c1 = 0 then 0 else nvl(D5.c8 , 0) / nullif(D4.c1, 0) end , 0) end * 100.0 * D1.c8 + case when nvl(case when D4.c1 = 0 then 0 else nvl(D5.c9 , 0) / nullif(D4.c1, 0) end , 0) = 0 then 0 else (case when
D4.c1 = 0 then 0 else nvl(D5.c9 , 0) / nullif(D4.c1, 0) end - case when D2.c1 = 0 then 0 else nvl(D3.c9 , 0) / nullif(D2.c1, 0) end) / nullif(case when D4.c1 = 0 then 0 else nvl(D5.c9 , 0) / nullif(D4.c1, 0) end , 0) end * 100.0 * D1.c9 > D6.c2 then 'Y' else 'R' end end as c4,

case when D5.c10 is not null then D5.c10 when D1.c10 is not null then D1.c10 when D2.c2 is not null then D2.c2 when D3.c10 is not null then D3.c10 when D4.c2 is not null then D4.c2 end as c5,
case when D2.c3 is not null then D2.c3 when D3.c11 is not null then D3.c11 when D1.c11 is not null then D1.c11 when D6.c3 is not null then D6.c3 end as c6,
ROW_NUMBER() OVER (PARTITION BY case when D2.c3 is not null then D2.c3 when D3.c11 is not null then D3.c11 when D1.c11 is not null then D1.c11 when D6.c3 is not null then D6.c3 end , case when D5.c10 is not null then D5.c10 when D1.c10 is not null then D1.c10 when D2.c2 is not null then D2.c2 when D3.c10 is

not null then D3.c10 when D4.c2 is not null then D4.c2 end ORDER BY case when D2.c3 is not null then D2.c3 when D3.c11 is not null then D3.c11 when D1.c11 is not null then D1.c11 when D6.c3 is not null then D6.c3 end ASC, case when D5.c10 is not null then D5.c10 when D1.c10 is not null then D1.c10 when D2.c2 is not null then
D2.c2 when D3.c10 is not null then D3.c10 when D4.c2 is not null then D4.c2 end ASC) as c7

from
(

(
(

(
(select sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c1,

sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c2,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c3,
sum(case when T867.MEASURE_TYPE = 'LOGEDIT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c4,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c5,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c6,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c7,
sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c8,
sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c9,
T13395.ENTITY_TYPE as c10,
T806.NAME as c11

from
(select 'Vehicle' as ENTITY_TYPE from dual union select 'Driver' from dual) T13395,
W_CUSTOMER_DIM T806 /* Company (W_CUSTOMER_DIM) */ ,
W_MEASURE_TYPE_DIM T867 /* Metric (W_MEASURE_TYPE_DIM) */ ,
W_THRESHOLD_FCT T4832 /* Facts: Threshold (W_THRESHOLD_FCT) */

where (T806.CUSTOMER_WID = T4832.CUSTOMER_WID and T806.CUSTOMER_WID = 177415.0 and T867.MEASURE_TYPE_WID = T4832.MEASURE_TYPE_WID and T867.SOURCE_CODE = 'HOS' and T4832.CUSTOMER_WID = 177415.0 and T13395.ENTITY_TYPE = 'Driver' and TO_DATE('1970-
01-01 01:01:01' , 'YYYY-MM-DD HH24:MI:SS') < TO_DATE('2010-08-30 17:43:51' , 'YYYY-MM-DD HH24:MI:SS') and (T867.MEASURE_TYPE in ('CUMULATIVE_VIOLATION_COUNT', 'CUMULATIVE_VIOLATION_TIME', 'DRIVING_VIOLATION_COUNT', 'DRIVING_VIOLATION_TIME', 'LOGEDIT', 'OFF_DUTY_VIOLATION_COUNT',

select sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c1,
sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c2,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c3,
sum(case when T867.MEASURE_TYPE = 'LOGEDIT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c4,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_VIOLATION_COUNT' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c5,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c6,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c7,
sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c8,
sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION_TIME' then T4832.MEASURE_WEIGHTING / nullif(100, 0) end) as c9,
T13395.ENTITY_TYPE as c10,
T806.NAME as c11
from
(select 'Vehicle' as ENTITY_TYPE from dual union select 'Driver' from dual) T13395,
W_CUSTOMER_DIM T806 /* Company (W_CUSTOMER_DIM) */ ,
W_MEASURE_TYPE_DIM T867 /* Metric (W_MEASURE_TYPE_DIM) */ ,
W_THRESHOLD_FCT T4832 /* Facts: Threshold (W_THRESHOLD_FCT) */
where (T806.CUSTOMER_WID = T4832.CUSTOMER_WID and T806.CUSTOMER_WID = 177415.0 and T867.MEASURE_TYPE_WID = T4832.MEASURE_TYPE_WID and T867.SOURCE_CODE = 'HOS' and T4832.CUSTOMER_WID = 177415.0 and T13395.ENTITY_TYPE = 'Driver' and TO_DATE('1970-01-01 01:01:01' , 'YYYY-MM-DD HH24:MI:SS') < TO_DATE('2010-08-30
17:43:51' , 'YYYY-MM-DD HH24:MI:SS') and (T867.MEASURE_TYPE in ('CUMULATIVE_VIOLATION_COUNT', 'CUMULATIVE_VIOLATION_TIME', 'DRIVING_VIOLATION_COUNT', 'DRIVING_VIOLATION_TIME', 'LOGEDIT', 'OFF_DUTY_VIOLATION_COUNT', 'OFF_DUTY_VIOLATION_TIME', 'ONDUTY_VIOLATION_COUNT', 'ONDUTY_VIOLATION_TIME')))
group by T806.NAME, T13395.ENTITY_TYPE
) D1 full outer join (select count(distinct T16815.DRIVER_WID) as c1,
x

• Deselecting ROWNUM_SUPPORTED
• 1 massive query � many smaller queries

• Plan on running performance
tests with different options

34

01-01 01:01:01' , 'YYYY-MM-DD HH24:MI:SS') < TO_DATE('2010-08-30 17:43:51' , 'YYYY-MM-DD HH24:MI:SS') and (T867.MEASURE_TYPE in ('CUMULATIVE_VIOLATION_COUNT', 'CUMULATIVE_VIOLATION_TIME', 'DRIVING_VIOLATION_COUNT', 'DRIVING_VIOLATION_TIME', 'LOGEDIT', 'OFF_DUTY_VIOLATION_COUNT',
'OFF_DUTY_VIOLATION_TIME', 'ONDUTY_VIOLATION_COUNT', 'ONDUTY_VIOLATION_TIME')))

group by T806.NAME, T13395.ENTITY_TYPE
) D1 full outer join (select count(distinct T16815.DRIVER_WID) as c1,

T13395.ENTITY_TYPE as c2,
T806.NAME as c3

from
(select 'Vehicle' as ENTITY_TYPE from dual union select 'Driver' from dual) T13395,
W_DAY_DIM T804 /* Date (W_DAY_DIM) */ ,
W_CUSTOMER_DIM T806 /* Company (W_CUSTOMER_DIM) */ ,
W_FLT_DRV_COVERAGE_AGG T16815 /* Driver Fleet Count (W_FLT_DRV_COVERAGE_AGG) */

where (T804.DAY_WID = T16815.DATE_WID and T806.CUSTOMER_WID = T16815.CUSTOMER_WID and T806.CUSTOMER_WID = 177415.0 and T13395.ENTITY_TYPE = 'Driver' and T16815.CUSTOMER_WID = 177415.0 and T804.DAY_DATE between TO_DATE('2010-08-26 00:00:00' , 'YYYY-MM-DD
HH24:MI:SS') and TO_DATE('2010-09-09 00:00:00' , 'YYYY-MM-DD HH24:MI:SS'))

group by T806.NAME, T13395.ENTITY_TYPE
) D2 On D1.c10 = D2.c2 and nvl(D1.c11 , 'q') = nvl(D2.c3 , 'q') and nvl(D1.c11 , 'z') = nvl(D2.c3 , 'z')) full outer join (select sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION' then T1021.MEASURE_COUNT end) as c1,

sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION' then T1021.MEASURE_COUNT end) as c2,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION' then T1021.MEASURE_COUNT end) as c3,
sum(case when T867.MEASURE_TYPE = 'LOGEDIT' then T1021.MEASURE_COUNT end) as c4,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_DRIVING' then T1021.MEASURE_COUNT end) as c5,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION' then T1021.MEASURE_VALUE end) as c6,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_DRIVING' then T1021.MEASURE_VALUE end) as c7,
sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION' then T1021.MEASURE_VALUE end) as c8,
sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION' then T1021.MEASURE_VALUE end) as c9,
T13395.ENTITY_TYPE as c10,
T806.NAME as c11

from
(select 'Vehicle' as ENTITY_TYPE from dual union select 'Driver' from dual) T13395,
W_DAY_DIM T804 /* Date (W_DAY_DIM) */ ,
W_CUSTOMER_DIM T806 /* Company (W_CUSTOMER_DIM) */ ,
W_MEASURE_TYPE_DIM T867 /* Metric (W_MEASURE_TYPE_DIM) */ ,
W_FLEET_AGG T1021 /* Facts: Measure Fleet (W_FLEET_AGG) */

where (T804.DAY_WID = T1021.DATE_WID and T806.CUSTOMER_WID = T1021.CUSTOMER_WID and T806.CUSTOMER_WID = 177415.0 and T867.MEASURE_TYPE_WID = T1021.MEASURE_TYPE_WID and T867.SOURCE_CODE = 'HOS' and T1021.CUSTOMER_WID = 177415.0 and
T13395.ENTITY_TYPE = 'Driver' and (T867.MEASURE_TYPE in ('CUMULATIVE_VIOLATION', 'DRIVING_VIOLATION', 'LOGEDIT', 'OFF_DUTY_DRIVING', 'ONDUTY_VIOLATION')) and T804.DAY_DATE between TO_DATE('2010-08-26 00:00:00' , 'YYYY-MM-DD HH24:MI:SS') and TO_DATE('2010-09-09 00:00:00' , 'YYYY-MM-DD
HH24:MI:SS'))

group by T806.NAME, T13395.ENTITY_TYPE
) D3 On D3.c10 = case when D1.c10 is not null then D1.c10 when D2.c2 is not null then D2.c2 end and nvl(D3.c11 , 'q') = nvl(case when D1.c11 is not null then D1.c11 when D2.c3 is not null then D2.c3 end , 'q') and nvl(D3.c11 , 'z') = nvl(case when D1.c11 is not null then D1.c11 when D2.c3 is not null then D2.c3 end

, 'z'))

select count(distinct T16815.DRIVER_WID) as c1,
T13395.ENTITY_TYPE as c2,
T806.NAME as c3
from
(select 'Vehicle' as ENTITY_TYPE from dual union select 'Driver' from dual) T13395,
W_DAY_DIM T804 /* Date (W_DAY_DIM) */ ,
W_CUSTOMER_DIM T806 /* Company (W_CUSTOMER_DIM) */ ,
W_FLT_DRV_COVERAGE_AGG T16815 /* Driver Fleet Count (W_FLT_DRV_COVERAGE_AGG) */
where (T804.DAY_WID = T16815.DATE_WID and T806.CUSTOMER_WID = T16815.CUSTOMER_WID and T806.CUSTOMER_WID = 177415.0 and T13395.ENTITY_TYPE = 'Driver' and T16815.CUSTOMER_WID = 177415.0 and T804.DAY_DATE between TO_DATE('2010-08-26 00:00:00' , 'YYYY-MM-DD HH24:MI:SS') and TO_DATE('2010-09-09 00:00:00' , 'YYYY-MM-DD
HH24:MI:SS'))
group by T806.NAME, T13395.ENTITY_TYPE
) D2 On D1.c10 = D2.c2 and nvl(D1.c11 , 'q') = nvl(D2.c3 , 'q') and nvl(D1.c11 , 'z') = nvl(D2.c3 , 'z')) full outer join (select sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION' then T1021.MEASURE_COUNT end) as c1,
sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION' then T1021.MEASURE_COUNT end) as c2,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION' then T1021.MEASURE_COUNT end) as c3,
sum(case when T867.MEASURE_TYPE = 'LOGEDIT' then T1021.MEASURE_COUNT end) as c4,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_DRIVING' then T1021.MEASURE_COUNT end) as c5,
sum(case when T867.MEASURE_TYPE = 'CUMULATIVE_VIOLATION' then T1021.MEASURE_VALUE end) as c6,
sum(case when T867.MEASURE_TYPE = 'OFF_DUTY_DRIVING' then T1021.MEASURE_VALUE end) as c7,
sum(case when T867.MEASURE_TYPE = 'ONDUTY_VIOLATION' then T1021.MEASURE_VALUE end) as c8,
sum(case when T867.MEASURE_TYPE = 'DRIVING_VIOLATION' then T1021.MEASURE_VALUE end) as c9,
T13395.ENTITY_TYPE as c10,
T806.NAME as c11
from
(select 'Vehicle' as ENTITY_TYPE from dual union select 'Driver' from dual) T13395,
W_DAY_DIM T804 /* Date (W_DAY_DIM) */ ,
W_CUSTOMER_DIM T806 /* Company (W_CUSTOMER_DIM) */ ,
W_MEASURE_TYPE_DIM T867 /* Metric (W_MEASURE_TYPE_DIM) */ ,
W_FLEET_AGG T1021 /* Facts: Measure Fleet (W_FLEET_AGG) */
where (T804.DAY_WID = T1021.DATE_WID and T806.CUSTOMER_WID = T1021.CUSTOMER_WID and T806.CUSTOMER_WID = 177415.0 and T867.MEASURE_TYPE_WID = T1021.MEASURE_TYPE_WID and T867.SOURCE_CODE = 'HOS' and T1021.CUSTOMER_WID = 177415.0 and T13395.ENTITY_TYPE = 'Driver' and (T867.MEASURE_TYPE in
('CUMULATIVE_VIOLATION', 'DRIVING_VIOLATION', 'LOGEDIT', 'OFF_DUTY_DRIVING', 'ONDUTY_VIOLATION')) and T804.DAY_DATE between TO_DATE('2010-08-26 00:00:00' , 'YYYY-MM-DD HH24:MI:SS') and TO_DATE('2010-09-09 00:00:00' , 'YYYY-MM-DD HH24:MI:SS'))
group by T806.NAME, T13395.ENTITY_TYPE

• Database CPU had to parse and merge recordsets
• Take advantage of OBI CPU power if database is

overloaded
• Recent test yielded 9x improvement at load!

Common Tuning: Incorrect Nullability

• A simple thing like the Nullable flag in the
physical layer can have negative effects

• Sample query requires 2 Fact tables

• If REGION_NAME is set to allow NULLS:
– Join between the two is inefficient
– On nvl(D1.c2 , 'q') = nvl(D2.c2 , 'q') and

nvl (D1.c2 , 'z') = nvl (D2.c2 , 'z')

35

nvl (D1.c2 , 'z') = nvl (D2.c2 , 'z')

• If REGION_NAME is set to NOT NULL
– On D1.c2 = D2.c2

• Make sure the physical database is set
correctly before import of tables

Common Tuning: Extra Tables

• If an additional table is added to a query that is
not needed, performance will suffer

– Worse: Result could be wrong!

• This example has a 1:1 extension table with
Company using a complex join

– There are no 1:1 joins in the Physical Layer

• A query of COMPANY and ORDERS table will
also include COMPANY_DETAILS

36

• This happens when there is a complex join
between 2 tables in a Logical Table Source

select T188.COMPANY_NAME as c1,
count(T174.ORDER_ID) as c2,
T188.COMPANY_ID as c3

from
COMPANY T188,
COMPANY_DETAILS T1960 ,
ORDERS T174

where (….

Common Tuning: Extra Tables

• To resolve, change the join to be a FK join
– Keep the main table on the many side of the 1:M

• OBI will not include a ‘higher’ grain table unless needed

• Trick OBI to use the optional table only when needed and
not all of the time

37

not all of the time

select T188.COMPANY_NAME as c1,
count(T174.ORDER_ID) as c2,
T188.COMPANY_ID as c3

from
COMPANY T188,
ORDERS T174

where (….

Common Tuning: No Group Bys

• One of the biggest performance problems is missing Group
Bys

• Detailed data is returned to the OBI Server which does the
Group By
– Usually returns a much larger dataset than ideal
– Can be as bad as Gigabytes vs. 1 Kbyte

38

• Variety of reasons this can occur
– Using a function not supported by the database

• E.g., Count(Distinct) does not exist in MS Access
• All detailed records are returned to OBI Server for aggregation

– Using a function not enabled in the Database Features tab
– Configuration error, usually with the Content tab

• Start with the Features tab to see if support is enabled

Database Features Tab

• The Features tab controls what
SQL is generated

• It is uncommon to alter the
defaults

• Here, the RANK() function is not
supported
– Any Rank Metrics will require all

39

– Any Rank Metrics will require all
detail records to be sent to the OBI
Server

– OBI server then does the Rank()

• A simple check box may have
benefits of orders of magnitude

• These are global settings –
Regression test!

Know the proper
SQL beforehand!

Common Tuning: Fact-to-Fact Joins

• Fact to Fact joins are a
no-no
– Joining 2 very large

tables together

• Instead, use conformed
dimensions

40

dimensions
– Two queries will be

issued instead
– Each query will have a

small result set
– The small result sets are

then joined

Connection Pools

• Most of the default
settings are rarely
changed

Make sure to use native
Call Interface and not
ODBC!

41

ODBC!

Set to support 10-20% of
concurrent users X #
logical queries per page

Connection Pooling
should be enabled

Caching

• OBI has a sophisticated caching engine

• It caches the results of SQL queries
– Siebel Analytics caches the whole Logical query or not at all
– OBI 10.x caches portions of a multi-part logical query

• Caches can be reused across queries
– Across users depending on security

42

– Currently cannot share cache across clustered servers (except iBots)

• Cache repopulation
– Manual table by table cache durations
– Using an Event Polling Table is a flexible approach

• Integration with ETL via a table that is periodically polled

• Caching can be pre-loaded for users via iBots to pre-execute
dashboards and reports
– First users in the morning will cache hit and experience good performance

Caching – Poor Man’s Performance

• Caching can help provide excellent performance in
many scenarios

• It is not a replacement for any of the topics
covered
– Caching Ad-hoc is impossible

43

– Caching Ad-hoc is impossible
– Caching real-time systems is impossible
– Caching when using tight security becomes very difficult
– Caching highly interactive dashboards becomes difficult

to impossible

• Cherry on top of a great sundae

Follow OBI RPD Best Practices

If you :
– Follow good Dimensional Modeling design
– Follow OBI configuration best practices
– Set up database performance features properly

You will generally have a sound, good performing model

• Keep in mind these best practices

44

• Keep in mind these best practices
– Always fill out the content tab

• The Content tab controls which table OBI uses and how it writes much
of its SQL

– Verify your Physical Layer Null Flags
– Use conformed dimensions
– Replace large or complex Views with tables
– Make your Physical Model look like your Business Model
– Design your Dimensional Models based on your reports

• Keep ad-hoc flexibility in mind

User Interface

General UI Recommendations

From a UI design and build perspective, a dashboard page’s
performance depends on:

1. The quantity and amount of data loaded into the prompts
• Try to limit the number of rows returned

• Use Multi-selects & constraining

• Be mindful of users with slow network connections
• Constraining across dimensions will be relatively slow

46

• Constraining across dimensions will be relatively slow

2. Use fewer reports but more views
• Each report dragged to a page makes a new request
� New Logical SQL & new Physical SQL

• Use Compound Layouts as much as possible instead of multiple
report objects
• Combines multiple views into one request

General UI Recommendations

3. The number of reports & report views on a page
• More reports are more UI objects to manage and draw

• Not to mention more queries!

• This sample page will generate 32 Logical queries!

47

Secret: Hidden Sections / Conditional Sections are
always executed!

General UI Recommendations

4. Sync up report criteria columns with view grain
– Remove extra columns from the criteria tab
– Lower dimensionality increases the record set

Report Grain:
Week X Office

48

Week X Office
e.g, 26 X 5 = 130 rows

Query Grain:
Day X Employee
e.g., 182 X 400 = 72,800 rows!

General UI Recommendations

5. Reduce the quantity of data each report shows
• Use paging controls or place large data dumps on separate

pages
• Pivot Tables do not have the ability to limit the # of rows

displayed at once
• Pre-filter before user prompt selection

• Use default values in the report

49

6. Seek out and destroy UNION queries
– Use the other techniques to eliminate them
– UNIONs have other report & UI limitations anyway
– Worst case, use UNION ALL instead – databases prefer

7. Avoid fully flexible date ranges
– Fix time selections (e.g., ‘last 2 weeks’)
– Allows aggregates to be built

Summary

• OBI is a SQL generation engine

• The database does the heavy lifting

• Make it easy on the poor database!
• Put everything it needs together in

50

• Put everything it needs together in
one place

• Organize data in an easy to
access way

• Tune the database to be fast
• Ask good questions to it via good

SQL

CONTACT INFORMATION

Jimmy Dahlan
Director – US West

Kusal Swarnakar
Managing Partner
email: kusal.swarnakar@kpipartners.com
phone: (925) 984-1371

Jaime Seagraves
Director – US North East

Norman Dy
Director – US West
email:
norman.dy@kpipartners.com
phone: (619) 245-5090

KPI Partners Sales Team Visit Booth # 2235

WWW.KPIPARTNERS.COM 51

Director – US West
email:
jimmy.dahlan@kpipartners.com
phone: (408) 981-4284

Mark Joslin
Director – South East
email: mark.joslin@kpipartners.com
phone: (336) 882-8185

Director – US North East
email:
jaime.seagraves@kpipartners.com
phone: (630) 854-0450

Keith Weisz
Director – US Central
email: keith.weisz@kpipartners.com
phone: (816) 304-1005

