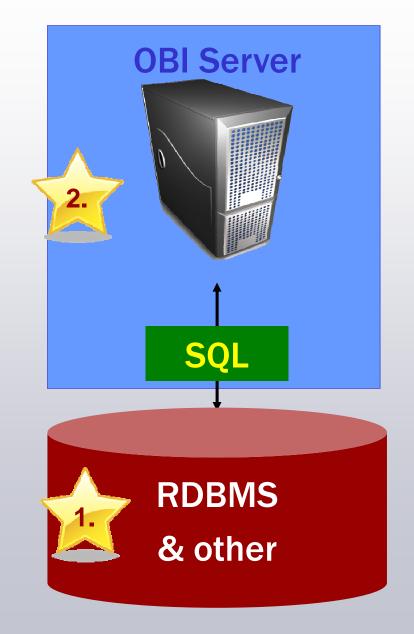
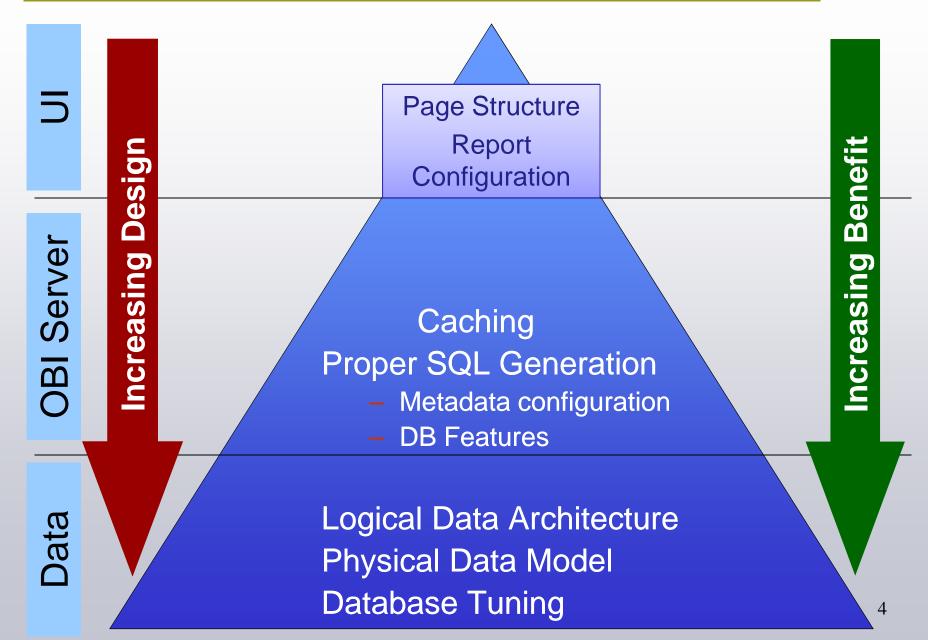
Planning for High Performance OBI

September 19, 2010

Jeff McQuigg Sr. Architect, KPI Partners www.kpipartners.com



Agenda


- Introduction
- Logical Data Architecture
- Physical Data Model
- Physical Database Oracle Focused
- OBI Server
- User Interface
- Q&A

The Big Picture

- OBI/OBIEE is a ROLAP engine
 - Relational OLAP
- ROLAP BI Tools = SQL
 Generation engines
- Great Performance in a nutshell:
 - 1. Proper Data Design
 - 2. Proper SQL

Tuning Focus

Great Performance Preview

- Most of Great Performance is achieved before the 1st report is ever run
- 95% of great performance comes down to
 - Data Design
 - Database Tuning
 - Generating the corresponding Perfect SQL
- This will be the focus for today's seminar

- Dashboards and Answers impact performance to a lesser degree
 - Highlight a few basic UI design issues
- Caching will be briefly discussed
- Not discussed today:
 - OBI Server settings
 - Clustering

KPI Partners - Leaders in Oracle BI and EPM

Largest and Most Experienced ORACLE BI Services Company

■ Over 80 consultants with 55+ in USA and 30+ in India

Strong presence in San Francisco, Southern California, Atlanta, Boston, New York City, Washington DC, Chicago and Toronto

Extensive customer references and accolades

- Pillar Partner for Oracle Business Intelligence in Southern California, Northern California, North East and South East Regions
- PNC bank won Oracle's 2008 customer excellence award
- Netshops and PNC Bank presented at Oracle open world 2008
- Novartis Pharmaceuticals awarded "Above and Beyond" award to KPI Partners
- 5 customers presented at Oracle Open World 2009

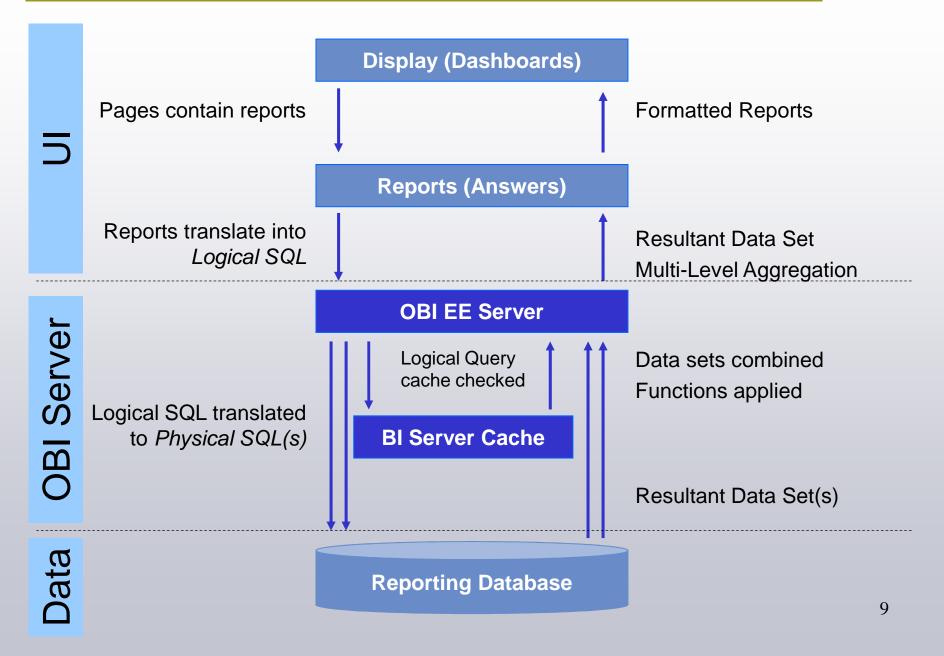
Proven Implementation Methodology

Templates of Process Maps that ensures a successful deployment

Leader in innovation

■ First partner to integrate EBS, BI applications, OBIEE and Hyperion

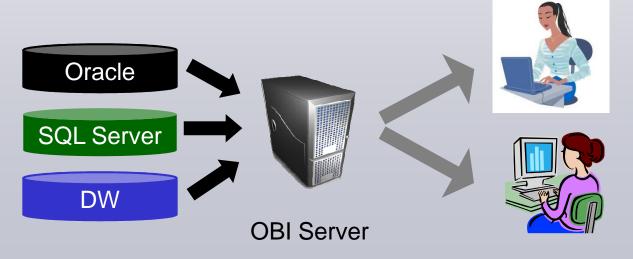
PNC Bank wins 2008 Oracle Customer Excellence Award



About Jeff McQuigg

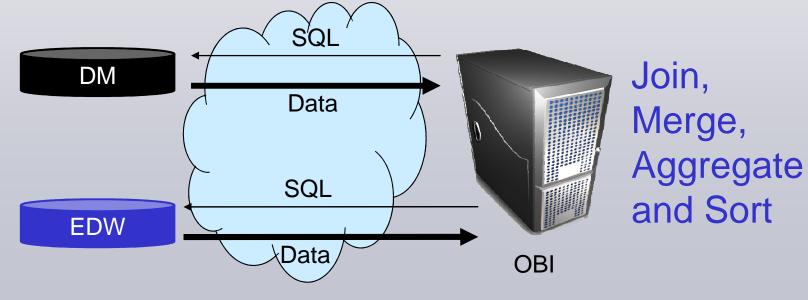
- Senior Architect at KPI Partners
- 9 years Siebel Analytics & OBI consulting experience, 18 years overall
- Developed many of Siebel's early Analytics v7.0 best practices & wrote part of the certification exam
- Personally been involved with over 30+ OBI projects in every capacity (BI Architect, Data Modeling, RPD Metadata, Business Analyst, Report Developer, ETL Architect/Developer, Project Manager)
- BI & OBI Thought Leader:
 - Longtime IT Toolbox Blog & now <u>greatobi.wordpress.com</u>
 - Co-Moderator of new architect-level OBIEE Enterprise Methodology discussion board
 - Frequent Oracle Open World Speaker
 - Developed OBI Deployment Methodology, deliverable templates and all Training programs with Metricsphere
- Currently day-to-day managing & architecting a \$2.1 million custom DW & OBJ project

Logical Data Architecture


Anatomy of an OBI Query

Logical Data Architecture - Centralize

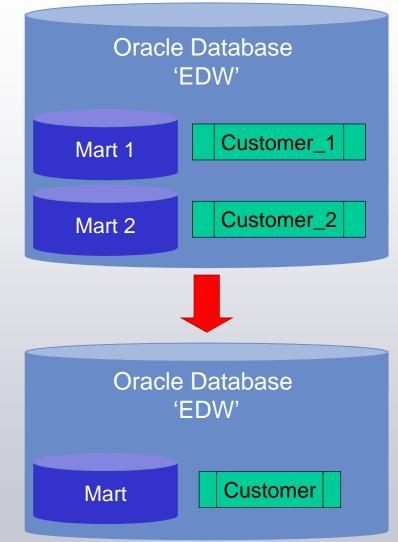
Step #1: Consolidate


- Data can reside in multiple physical places
 - OBI can map to each database
- Federation "Play the data where it lies"
 - nQuire/Siebel Analytics/OBI strength from Day 1
 - Enterprise Information Integration (EII)
- Virtual Database with distributed tables

Logical Data Architecture - Centralize

Federated Model – Good for the Oracle Sales Pitch

- OBI generates queries for each data source
- Data returns from each data source
 - Sometimes at a low level grain (detail records!)
- Data must then be integrated on the OBI Server
 - Essentially 'Network Joins'
- Large data over the wire = poor performance
 - Good for prototypes and small sources, such as forecast XLSs


Logical Data Architecture - Centralize

- Centralize data sources into a single database schema
- Let the ETL do the hard work of data movement
 - Do it once at night vs. do it every time for a query
- When data resides in one place:
 - A single query can be generated
 - Small result sets returned
 - Network joins eliminated
- This goes double when using transactional sources
 - Data Warehouses were invented to help large queries

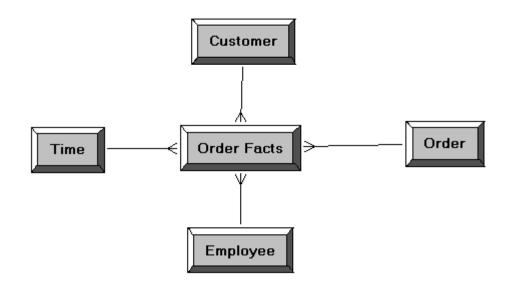
Logical Data Architecture - Integrate

Step #2: Integrate

- Data may be physically in one schema but still in separate tables
 - Multiple OBI mappings → multiple queries
 - More tables to link → slower performance
- Integration merges and links data together
 - Complex integration rules are done by ETL not user queries
- Fewer database objects → better object reuse
- Data Integration is the hard part of any DW or BI System
 - Complex rules are needed
 - Poor data quality
 - Differing definitions

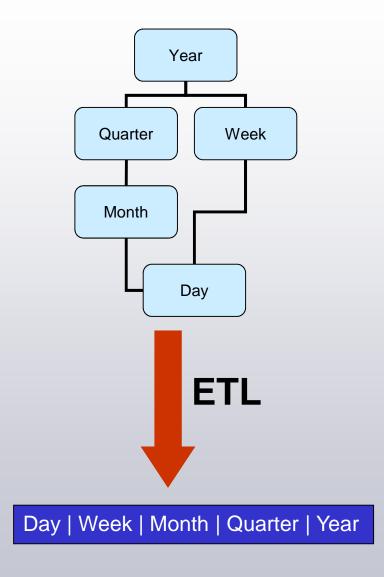
Physical Data Model

Physical Data Model Overview

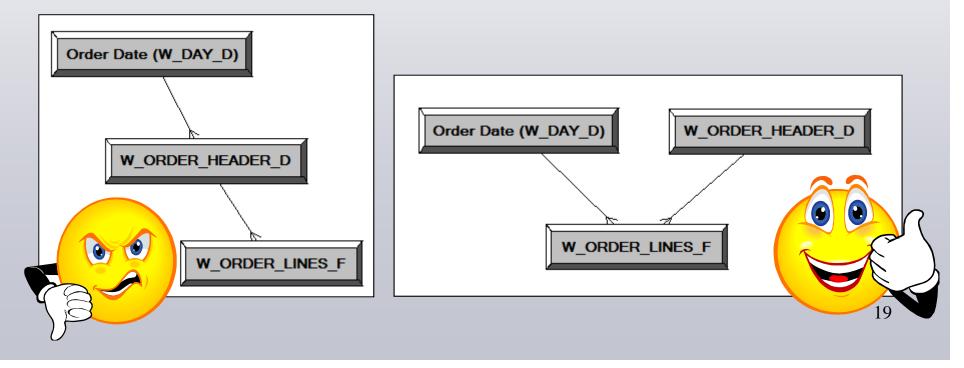

- Your main performance weapon is a good Dimensional Model
 - Like a computing Algorithm not all models are created equal
- Dimensional Modeling is:
 - A data modeling approach
 - Conceptually different to relational
 - Designed for large query performance
 - A skill set unto its own

- A proper 'Star Schema' Dimensional Model:
 - Makes mapping OBI Metadata very easy
 - Optimal database query performance
 - Uses database optimizations
- Poorly designed models are common
- Think Top-Down design

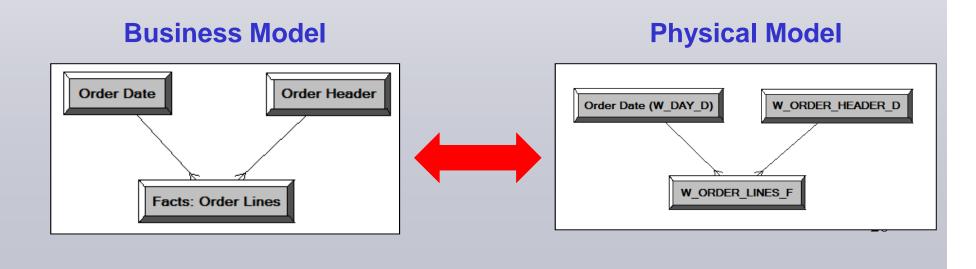
Dimensional Modeling Overview


- "Fact tables" hold measurements/metrics/facts
 - Counts, Cycle Times, \$ Amts, Qtys, Prices, Estimates, Forecasts
- Link to several "Dimension tables", which contain descriptions
 - Geography, Customers, Products, Time, Employees, etc
- The Book on Dimensional Modeling
 - The Data Warehouse Toolkit by Ralph Kimball

Dimensional Modeling Overview


- Dimensional Modeling is a topic beyond the scope of this session
 - Discuss 5 general purpose techniques/tips
- Tips will work great for mainstream databases
 - Oracle
 - DB2
 - Sybase/SQL Server
- Different recommendations for MPP databases
 - Teradata
 - DW Appliances (e.g., Netezza)

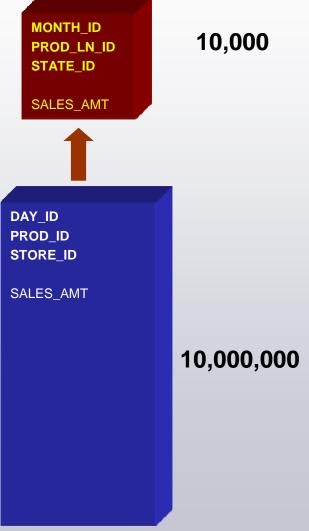
Technique #1: De-normalize


- Refers to dimensional objects, not facts
- Merge several tables into one flat table
 - Opposite of relational modeling
 - Do in an OBI Logical table anyway
- Nightly ETL does the de-normalization
- Goal: Reduce Joins for a query
 - Joins slow execution
- Additional Benefit: Simple Model
 Less OBI Mapping effort
- Caution: Facts must remain normalized
 - Inaccuracies will arise

- De-normalize dimensions to link to a fact
- A fact table links *directly* to its dimension tables
 - There are no intermediate tables (there are exceptions)
- Use the ETL to directly link each load

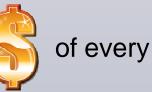
- The OBI Business Model (BM) defines your business view of your information
 - Defines 'what you want' out of your system
- Design rule of thumb: Make the Physical Data Model resemble the Business Model
 - The BM can map to a variety of physical models
 - Clean & simple mapping is best

Technique #2: Put Logic in Data Model


- Move complex calculations to the ETL and store the results as a new field/table
 - Some calculations may require many steps and differing input data sets
- Do once & use often vs. do often
- Goal: Simple Query SQL
- One of main differences between DW & DM
 - DM tailors to a specific use (Top-Down)
 - DW is generic in nature (Bottom-Up)
- Benefits:
 - Can use other database performance tricks
 - Can index the column
 - Simple SQL performs better

Technique #3: Aggregate Tables

- Summarize detail records to useful levels
- Use ETL or Materialized Views to create 'higher' tables
 - Higher grain tables have fewer combinations & are smaller
- Consider when at least 10:1 compression
 - Be careful with Day \rightarrow Week aggregates
- Map into OBI to have it pick the right table
 - Remember to set the Content Tab
- Goal: Database processes fewer rows per query
- Caution: Consider the costs of each new aggregate table:
 - ETL Batch window, storage, complex mapping, more code, more QA
 - Will other, easier techniques suffice?


Technique #4: Views

- Views do not help or hurt performance
- Opaque Views and Database Views are *identical* to the database
 - A view is a logic encapsulation device
- Exception: Materialized views
 - Physical tables computed in the ETL process
- Try to eliminate views in your system

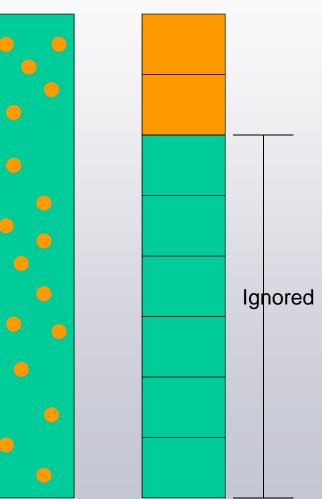
к. 	
eneral Co	iumns Neys Foreign Neys
Name: Di	m_W_INS_CLAIM_F_VW
Table Type	Select
∏ Use d	atabase specific SQL
	Default Initialization String
from VAL	AIM_WID as CLAIM_WID, sum(PAID_AMT) as PAID_AMT UEOF(OLAPTBO).W_INS_CLAIM_F CLAIM_WID
	Identical to the database
_	
	CREATE VIEW Dim_W_INS_CLAIM_F_VW AS
	select CLAIM_WID as CLAIM_WID, sum(PAID_AMT) as PAID_AMT
	from VALUEOF(OLAPTBO).W_INS_CLAIM_F
	group by CLAIM_WID;
	23

Technique #5: Creativity

- Dimensional Modeling is 25% Science, 75% Art
- Create solutions to problems as needed, keeping in mind the basic rules of Dimensional Modeling
 - Example: Mini Dimensions & Junk Dimensions
- Keep in mind the following goals:
 - Want to use simple SQL queries
 - Reduce the amount of data the database has to read
 - Use the ETL engine to offload logic from user queries
- Be sure to weigh costs
 design decision

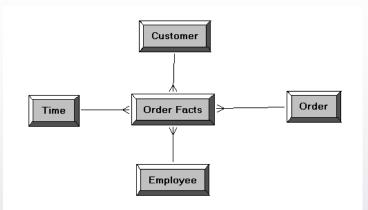
Physical Database (for Oracle)

- Sometimes there is simply a lot of data
- Highlight 2 key Oracle database features
 - Partitioning
 - Star Transformations
- Can be designed into the physical data model by the application team
- Commonly used features for data warehousing
 - Have been in Oracle database for years
- Are very efficient tools to improve many queries


Partitioning

- Breaks up large tables into several smaller pieces (partitions)
- Database reads only a subset of the whole table
- The database has metadata about each piece
 - Defines what range of data each partition contains
- Goal: eliminate non-needed data reads
 - Ex: Monthly partitions on a fact table with 4 years of daily data
 - Many queries are interested only in recent data
 - Ex: 2 months of data read instead of all 48 months
- Dramatic performance benefits are possible

Partitioned


Data contained in specific portions

27

Star Transformations

- Alternative execution plan for a Star Schema
- Uses additional information to recognize the Star pattern
- Requires bitmap indexes and FK constraints
- Optimizer rewrites the query
- Goal: Use all of the dimensions to go after a smaller set of fact rows
- Useful for highly selective queries

Normal:

Use **only 1** dimension to filter the Fact table

e.g., Filter on Customer only

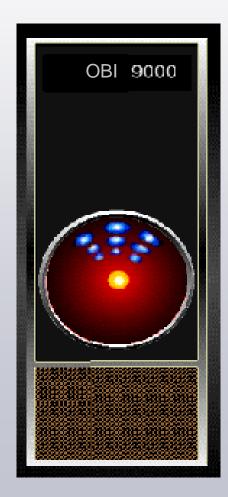
Star Transformation:

Use *all* dimensions to filter the Fact table e.g., Filter on Customer & Date & Employee

Other Tuning Items

- Ensure Indexes are heavily used
 - Review the Explain Plan and eliminate Full table scans
- Oracle Parallel Query may help
 - Best for large table or index scans
 - Consider other techniques first
- Star Transformations don't always help
- Narrow down large tables to reduce bytes
 Remove unused fields & metadata columns

OBI Server


OBI Server Tuning

- A good dimensional model is worthless if questions to it are poorly constructed
- OBI Repository Goal: Configure it to generate good SQL

If it's not perfect, it's wrong

- Get to know the NQQuery.log file!
- Design Key: Know what the proper SQL should be beforehand
 - correct # of queries being generated?
 - correct tables being used?
 - correct joins being used?
 - How does the design of a report change the SQL?

OBI 9000 says: "It can only be attributable to human error."

Know Your SQL

- It all starts by knowing the correct SQL for each query & report
- Brush up on your SQL!
 - Become knowledgeable of:
 - The WITH clause
 - What the ROW_NUMBER() does to SQL
 - How Time Series SQL works
 - Aggregate window functions (e.g., MAVG())
 - Subtotals (PARTITION BY)
 - Set Math (Union)
 - Newer OBI versions generate more complex SQL
- When tuning:
 - Start simple (not totals/subtotals & single fact tables)
 - Then add report logic to see when a problem arises
 - Always start with the Table view
 - Confirm your base record set and underlying query

Common Tuning: Wrong # of Queries

- Know the # of queries expected
 - Some requests should generate 2 queries
 - If 3 are generated, then OBI has been set up incorrectly
- OBI in some cases will generate one large query with 2 queries merged together

(Select A,Sum(B) from Fact B, Dim A) FULL OUTER JOIN

(Select A, Sum(X) from Fact X, Dim A)

- Check the Perf_Prefer_Internal_Stitch_Join and ROWNUM_SUPPORTED parameters to control
- Subtotals and report totals may generate sub-queries

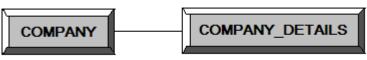
Database Features Tab

- The default settings are not Plan on running performance always optimal! tests with different options
- Deselecting ROWNUM_SUPPORTED
- 1 massive query \rightarrow many smaller queries

- Database CPU had to parse and merge recordsets
- Take advantage of OBI CPU power if database is overloaded
- Recent test yielded 9x improvement at load!

Common Tuning: Incorrect Nullability

- A simple thing like the Nullable flag in the physical layer can have negative effects
- Sample query requires 2 Fact tables
- If REGION_NAME is set to allow NULLS:
 - Join between the two is inefficient
 - On nvl(D1.c2, 'q') = nvl(D2.c2, 'q') and nvl(D1.c2, 'z') = nvl(D2.c2, 'z')
- If REGION_NAME is set to NOT NULL
 On D1.c2 = D2.c2
- Make sure the physical database is set correctly *before* import of tables


Region	# Completed Orders	# Orders In Progress
Africa	21	18
Americas	1099	977
Asia	149	128
Europe	943	781
Middle East	3	3

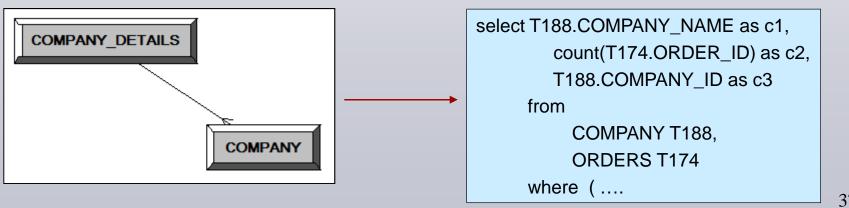
Physical Table - REGION					
General Columns Keys Foreign Keys					
Name	Туре	Length	Nullable		
N REGION_ID	DOUBLE		false		
REGION NAME					

Physical Table - REGION						
General	General Columns Keys Foreign Keys					
Name		Туре	Length	Nullable		
% REGION_ID		DOUBLE		false		
🔏 REGION_NAME		VARCHAR	50	false		

Common Tuning: Extra Tables

- If an additional table is added to a query that is not needed, performance will suffer
 - Worse: Result could be wrong!

- This example has a 1:1 extension table with Company using a complex join
 - There are no 1:1 joins in the Physical Layer
- A query of COMPANY and ORDERS table will also include COMPANY_DETAILS
- This happens when there is a **complex** join between 2 tables in a Logical Table Source


select T188.COMPANY_NAME as c1, count(T174.ORDER_ID) as c2, T188.COMPANY_ID as c3 from COMPANY T188, COMPANY_DETAILS T1960, ORDERS T174

where (....

Logical Table Source - COMPANY				
General Column Mapping Content				
Name: COMPANY				
Active Map to these tables:				
TORA_BP_TR""BP"."COMPANY"				
"ORA_BP_TR""BP"."COMPANY_DETAILS"				
Add <u>R</u> emove				
Joins:				
COMPANY COMPANY_DETAILS Inner				

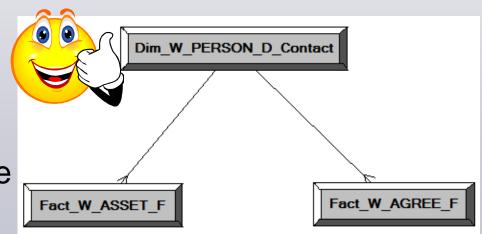
Common Tuning: Extra Tables

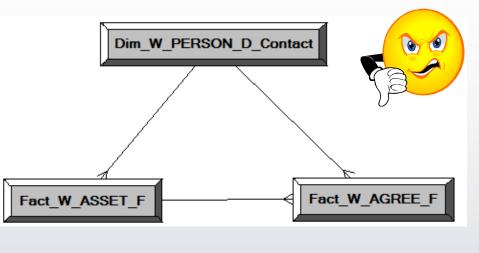
- To resolve, change the join to be a FK join
 - Keep the main table on the many side of the 1:M
- OBI will not include a 'higher' grain table unless needed
- Trick OBI to use the optional table only when needed and not all of the time

Common Tuning: No Group Bys

- One of the biggest performance problems is missing Group Bys
- Detailed data is returned to the OBI Server which does the Group By
 - Usually returns a much larger dataset than ideal
 - Can be as bad as Gigabytes vs. 1 Kbyte
- Variety of reasons this can occur
 - Using a function not supported by the database
 - E.g., Count(Distinct) does not exist in MS Access
 - All detailed records are returned to OBI Server for aggregation
 - Using a function not enabled in the Database Features tab
 - Configuration error, usually with the Content tab
- Start with the Features tab to see if support is enabled

Database Features Tab


- The Features tab controls what SQL is generated
- It is uncommon to alter the defaults
- Here, the RANK() function is not supported
 - Any Rank Metrics will require all detail records to be sent to the OBI Server
 - OBI server then does the Rank()
- A simple check box may have benefits of orders of magnitude
- These are global settings Regression test!


Database - ORA_BP_TR			
General Features Connection Pools Disp	lay Folders		
Feature	Value	Default	
LEFT_OUTER_JOIN_SUPPORTED			
RIGHT OUTER JOIN SUPPORTED		<u>.</u>	
FULL OUTER JOIN SUPPORTED		<u>,</u>	
NESTED_OUTER_JOIN_SUPPORTED		<u>,</u>	
UNION SUPPORTED			
UNION ALL SUPPORTED		<u>,</u>	
COUNT SUPPORTED	<u>.</u>		
COUNT_DISTINCT_SUPPORTED	<u>.</u>	<u>.</u>	
COUNT_STAR_SUPPORTED		•	
SUM SUPPORTED		•	
AVG_SUPPORTED		2	
MIN_SUPPORTED		2	
MAX_SUPPORTED			
FIRST_SUPPORTED		•	
LAST_SUPPORTED		•	
RANK_SUPPORTED] 🔽	
PERCENTILE_SUPPORTED			
MOVING_AVG_SUPPORTED			
TOPN_SUPPORTED			
BOTTOMN SUPPORTED			Ľ
Ask DBMS Revert to defaults	<u>F</u> ind	Find <u>Ag</u> ain	
0	K Ca	ncel	Help

Know the proper SQL beforehand!

Common Tuning: Fact-to-Fact Joins

- Fact to Fact joins are a no-no
 - Joining 2 very large tables together
- Instead, use conformed dimensions
 - Two queries will be issued instead
 - Each query will have a small result set
 - The small result sets are then joined

Connection Pools

- Most of the default settings are rarely changed
- Make sure to use *native* Call Interface and not ODBC!
- Set to support 10-20% of concurrent users X # logical queries per page
- Connection Pooling should be enabled

Connection Pool - Oracle	Data Warehouse Connection Pool
General Connection Scri	pts XML Write Back
Name: Orac	le Data Warehouse Connection Pool Permissions
<u>Call interface:</u>	Default (OCI 8i/9i)
Maximum connections:	100 🗧
<u>R</u> equire fully qualified	table names
D <u>a</u> ta source name: VA	LUEOF(OLAP_DSN)
Shared logon	
User name: VALUE	EOF(OLAP_USER) Password:
Enable connection po	poling
<u>T</u> imeout: 5	(minutes)
Use multithreaded co	nnections
Execute queries asyn	chronously
Parameters supported	i l
Isolation level:	Dirty read
Description:	
User name is VALUEOF Data source name is VA	
	OK Cancel Help

Caching

- OBI has a sophisticated caching engine
- It caches the results of SQL queries
 - Siebel Analytics caches the whole Logical query or not at all
 - OBI 10.x caches portions of a multi-part logical query
- Caches can be reused across queries
 - Across users depending on security
 - Currently cannot share cache across clustered servers (except iBots)
- Cache repopulation
 - Manual table by table cache durations
 - Using an Event Polling Table is a flexible approach
 - Integration with ETL via a table that is periodically polled
- Caching can be pre-loaded for users via iBots to pre-execute dashboards and reports
 - First users in the morning will cache hit and experience good performance

Caching – Poor Man's Performance

- Caching can help provide excellent performance in many scenarios
- It is not a replacement for any of the topics covered
 - Caching Ad-hoc is impossible
 - Caching real-time systems is impossible
 - Caching when using tight security becomes very difficult
 - Caching highly interactive dashboards becomes difficult to impossible
- Cherry on top of a great sundae

Follow OBI RPD Best Practices

If you :

- Follow good Dimensional Modeling design
- Follow OBI configuration best practices
- Set up database performance features properly

You will generally have a sound, good performing model

- Keep in mind these best practices
 - Always fill out the content tab
 - The Content tab controls which table OBI uses and how it writes much of its SQL
 - Verify your Physical Layer Null Flags
 - Use conformed dimensions
 - Replace large or complex Views with tables
 - Make your Physical Model look like your Business Model
 - Design your Dimensional Models based on your reports
 - Keep ad-hoc flexibility in mind

User Interface

From a UI design and build perspective, a dashboard page's performance depends on:

- 1. The quantity and amount of data loaded into the prompts
 - Try to limit the number of rows returned
 - Use Multi-selects & constraining
 - Be mindful of users with slow network connections
 - Constraining across dimensions will be relatively slow
- 2. Use fewer reports but more views
 - Each report dragged to a page makes a new request
 New Logical SQL & new Physical SQL
 - Use Compound Layouts as much as possible instead of multiple report objects
 - Combines multiple views into one request

3. The number of reports & report views on a page

- More reports are more UI objects to manage and draw
 - Not to mention more queries!
- This sample page will generate 32 Logical queries!

Secret: Hidden Sections / Conditional Sections are always executed!

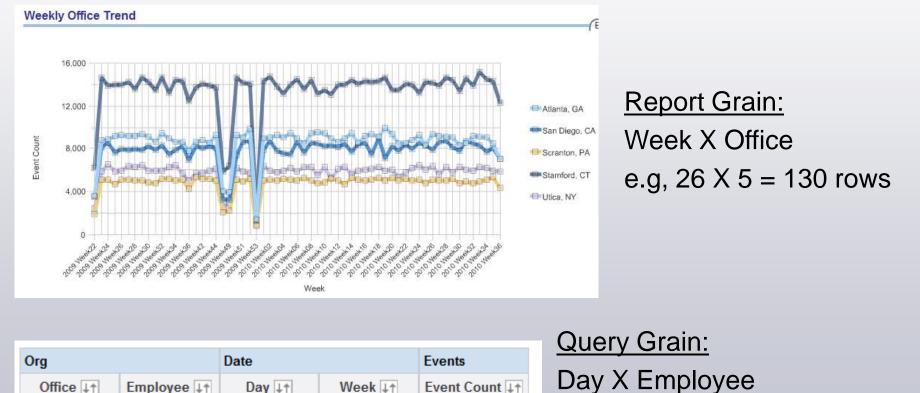
Office 1

 $f_{\mathbf{x}}$ \mathbf{Y} \mathbf{X}

Employee 1

 $\ll f_{x} \vee \times$

Day ↓↑


 $\ll f_x \vee \times$

Week 11

 $\ll f_x \vee \times$

4. Sync up report criteria columns with view grain

- Remove extra columns from the criteria tab
- Lower dimensionality increases the record set

Event Count 1+

\land f_x Y 🗙

e.g.,	182 X	400	=	72	,800	rows	!
						48	

48

- 5. Reduce the quantity of data each report shows
 - Use paging controls or place large data dumps on separate pages
 - Pivot Tables do not have the ability to limit the # of rows displayed at once
 - Pre-filter before user prompt selection
 - Use default values in the report
- 6. Seek out and destroy UNION queries
 - Use the other techniques to eliminate them
 - UNIONs have other report & UI limitations anyway
 - Worst case, use UNION ALL instead databases prefer
- 7. Avoid fully flexible date ranges
 - Fix time selections (e.g., 'last 2 weeks')
 - Allows aggregates to be built

Summary

- OBI is a SQL generation engine
- The database does the heavy lifting

- Make it easy on the poor database!
 - Put everything it needs together in one place
 - Organize data in an easy to access way
 - Tune the database to be fast
 - Ask good questions to it via good SQL

CONTACT INFORMATION

KPI Partners Sales Team

Kusal Swarnakar

Managing Partner email: kusal.swarnakar@kpipartners.com phone: (925) 984-1371

Jimmy Dahlan Director – US West email: jimmy.dahlan@kpipartners.com phone: (408) 981-4284

Mark Joslin Director – South East email: mark.joslin@kpipartners.com phone: (336) 882-8185

Visit Booth # 2235

Norman Dy Director – US West email: norman.dy@kpipartners.com phone: (619) 245-5090

Jaime Seagraves Director – US North East email: jaime.seagraves@kpipartners.com phone: (630) 854-0450

Keith Weisz Director – US Central email: keith.weisz@kpipartners.com phone: (816) 304-1005

WWW.KPIPARTNERS.COM

